165 research outputs found

    Integrable Systems and Factorization Problems

    Full text link
    The present lectures were prepared for the Faro International Summer School on Factorization and Integrable Systems in September 2000. They were intended for participants with the background in Analysis and Operator Theory but without special knowledge of Geometry and Lie Groups. In order to make the main ideas reasonably clear, I tried to use only matrix algebras such as gl(n)\frak{gl}(n) and its natural subalgebras; Lie groups used are either GL(n) and its subgroups, or loop groups consisting of matrix-valued functions on the circle (possibly admitting an extension to parts of the Riemann sphere). I hope this makes the environment sufficiently easy to live in for an analyst. The main goal is to explain how the factorization problems (typically, the matrix Riemann problem) generate the entire small world of Integrable Systems along with the geometry of the phase space, Hamiltonian structure, Lax representations, integrals of motion and explicit solutions. The key tool will be the \emph{% classical r-matrix} (an object whose other guise is the well-known Hilbert transform). I do not give technical details, unless they may be exposed in a few lines; on the other hand, all motivations are given in full scale whenever possible.Comment: LaTeX 2.09, 69 pages. Introductory lectures on Integrable systems, Classical r-matrices and Factorization problem

    Classical and Quantum Nonultralocal Systems on the Lattice

    Get PDF
    We classify nonultralocal Poisson brackets for 1-dimensional lattice systems and describe the corresponding regularizations of the Poisson bracket relations for the monodromy matrix . A nonultralocal quantum algebras on the lattices for these systems are constructed.For some class of such algebras an ultralocalization procedure is proposed.The technique of the modified Bethe-Anzatz for these algebras is developed.This technique is applied to the nonlinear sigma model problem.Comment: 33 pp. Latex. The file is resubmitted since it was spoiled during transmissio

    Drinfeld-Sokolov reduction for difference operators and deformations of W-algebras. II. General Semisimple Case

    Full text link
    The paper is the sequel to q-alg/9704011. We extend the Drinfeld-Sokolov reduction procedure to q-difference operators associated with arbitrary semisimple Lie algebras. This leads to a new elliptic deformation of the Lie bialgebra structure on the associated loop algebra. The related classical r-matrix is explicitly described in terms of the Coxeter transformation. We also present a cross-section theorem for q-gauge transformations which generalizes a theorem due to R.Steinberg.Comment: 19 pp., AMS-LaTeX. The paper replaces a temporarily withdrawn text; the first part (written by E. Frenkel, N. Reshetikhin, and M. A. Semenov-Tian-Shansky) is available as q-alg/970401

    Classification of All Poisson-Lie Structures on an Infinite-Dimensional Jet Group

    Full text link
    A local classification of all Poisson-Lie structures on an infinite-dimensional group G∞G_{\infty} of formal power series is given. All Lie bialgebra structures on the Lie algebra {\Cal G}_{\infty} of G∞G_{\infty} are also classified.Comment: 11 pages, AmSTeX fil

    Path Integral Quantization of the Symplectic Leaves of the SU(2)* Poisson-Lie Group

    Get PDF
    The Feynman path integral is used to quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U_q(su(2)). This is achieved by finding explicit Darboux coordinates and then using a phase space path integral. I discuss the *-structure of SU(2)* and give a detailed description of its leaves using various parametrizations and also compare the results with the path integral quantization of spin.Comment: 24 pages, LaTeX, no figures, full postscript available from http://phyweb.lbl.gov/theorygroup/papers/40890.p

    Differential technique for the covariant orbital angular momentum operators

    Full text link
    The orbital angular momentum operator expansion turns to be a powerful tool to construct the fully covariant partial wave amplitudes of hadron decay reactions and hadron photo- and electroproduction processes. In this paper we consider a useful development of the orbital angular momentum operator expansion method. We present the differential technique allowing the direct calculation of convolutions of two orbital angular momentum operators with an arbitrary number of open Lorentz indices. This differential technique greatly simplifies calculations when the reaction subject to the partial wave analysis involves high spin particles in the initial and/or final states. We also present a useful generalization of the orbital angular momentum operators.Comment: 14 page

    Pion and photon beam initiated backward charmonium or lepton pair production

    Full text link
    Hard exclusive reactions initiated by pion or photon beams within the near-backward kinematical regime specified by the small Mandelstam variable −u-u can be studied to access pion-to-nucleon and photon-to-nucleon Transition Distribution Amplitudes (TDAs). Checking the validity of collinear factorized description of pion and photon induced reactions in terms of TDAs allows to test the universality of TDAs between the space-like and time-like regimes that is the indispensable feature of the QCD collinear factorization approach. In this short review we consider the exclusive pion- and photo-production off nucleon of a highly virtual lepton pair (or heavy quarkonium) in the near-backward region. We first employ a simplistic cross channel nucleon exchange model of pion-to-nucleon TDAs to estimate the magnitude of the corresponding cross sections for the kinematical conditions of J-PARC. We then illustrate the flexibility of our approach by building a two parameter model for the photon-to-nucleon TDAs based on preliminary results for near threshold J/ψJ/\psi photoproduction at JLab and provide our estimates for near-backward J/ψJ/\psi photoproduction and Timelike Compton Scattering cross sections for the kinematical conditions of JLab and of future EIC and EicC.Comment: 22 pages, 9 figures; The paper is extended by adding in Sec. 7 a discussion on the near-backward charmonium photoproduction employing the photon-to-nucleon TDA model driven by the recent GlueX data on the J/ψJ/\psi photoproduction in arXiv:2304.0384
    • 

    corecore